

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-13/0107 of 3 March 2015

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Klimas Wkret-met screw-in plug eco-drive

Screwed-in plastic anchor for fixing of external thermal insulation composite systems with rendering in concrete and masonry

Klimas Sp. z o.o. Kuznica Kiedrzynska ul. Wincentego Witosa 135/137 42-233 MYKANÓW POLEN

Klimas Sp. z o.o.

15 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Plastic anchors for fixing of external thermal insulation composite systems with rendering", ETAG 014, edition February 2011

used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

ETA-13/0107 issued on 16 May 2013

European Technical Assessment ETA-13/0107

Page 2 of 15 | 3 March 2015

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to Article 25 Paragraph 3 of Regulation (EU) No 305/2011.

Z11913.15 8.06.04-39/15

European Technical Assessment ETA-13/0107

Page 3 of 15 | 3 March 2015

English translation prepared by DIBt

Specific part

1 Technical description of the product

The screwed-in anchor Klimas Wkret-met eco-drive consists of an anchor sleeve made of polyamide and an accompanying specific screw of galvanised steel.

The anchor type eco-drive S is additionally combined with an insulation cover.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verification and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 25 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

The essential characteristics regarding mechanical resistance and stability are included under the Basic Works Requirement Safety in use.

3.2 Safety in case of fire (BWR 2)

Not applicable.

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances contained in this European Technical Assessment, there may be requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

Essential characteristic	Performance
Characteristic resistance	See Annex C
Edge distances and spacing	See Annex B
Point thermal transmittance	See Annex C
Plate stiffness	See Annex C
Displacements	See Annex C

Z11913.15 8.06.04-39/15

European Technical Assessment ETA-13/0107

Page 4 of 15 | 3 March 2015

English translation prepared by DIBt

- 3.5 Protection against noise (BWR 5)
 Not applicable.
- 3.6 Energy economy and heat retention (BWR 6) Not applicable.
- 3.7 Sustainable use of natural resources (BWR 7)

For the sustainable use of natural resources no performance was determined for this product.

3.8 General aspects

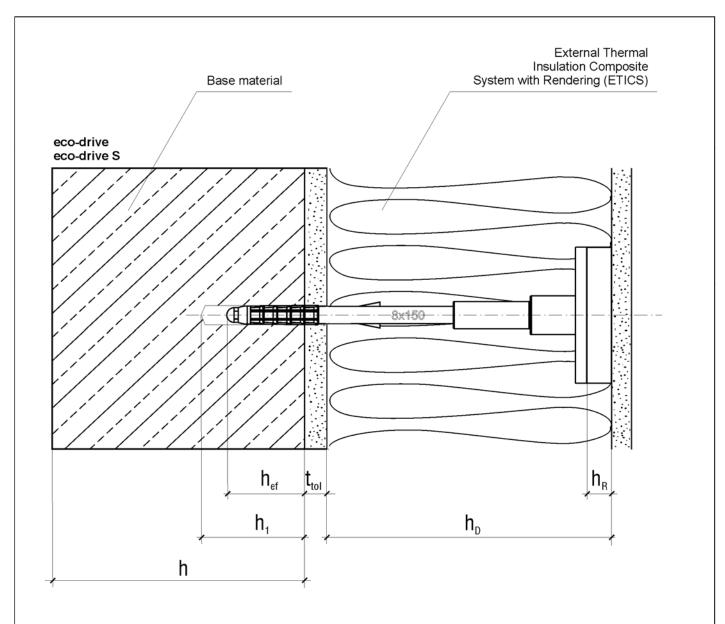
The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account.

4 Assessment and verification of constancy of performance (AVCP) system applied with reference to its legal base

According to Decision 97/463/EC of the Commission of 27 June 1997 (Official Journal of the European Communities L 198 of 25.07.1997, p. 31–32) the system of assessment and verification of constancy of performance (AVCP) (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table apply.

Product	Intended use	Level or class	System
Plastic anchors for use in concrete and masonry	For use in systems, such as façade systems, for fixing or supporting elements which contribute to the stability of the systems	_	2+

5 Technical details necessary for the implementation of the AVCP system, as provided in the applicable EAD


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 3 March by Deutsches Institut für Bautechnik

Uwe Benderbeglaubigt:Head of DepartmentZiegler

Z11913.15 8.06.04-39/15

Intended use

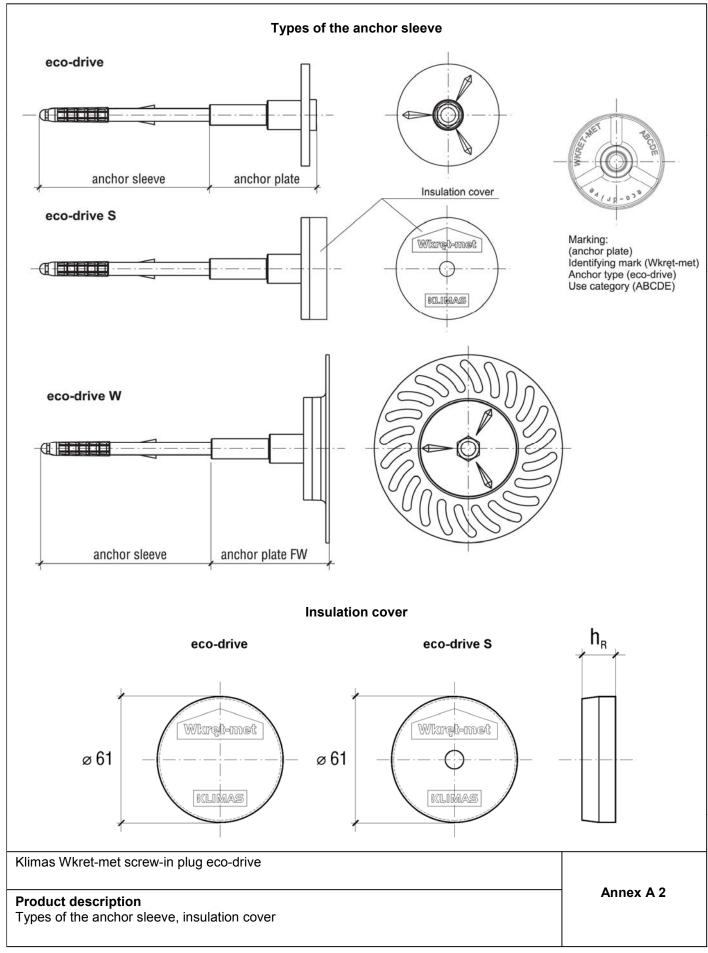
Anchorage of ETICS in concrete, masonry and in autoclaved aerated concrete

Legend:

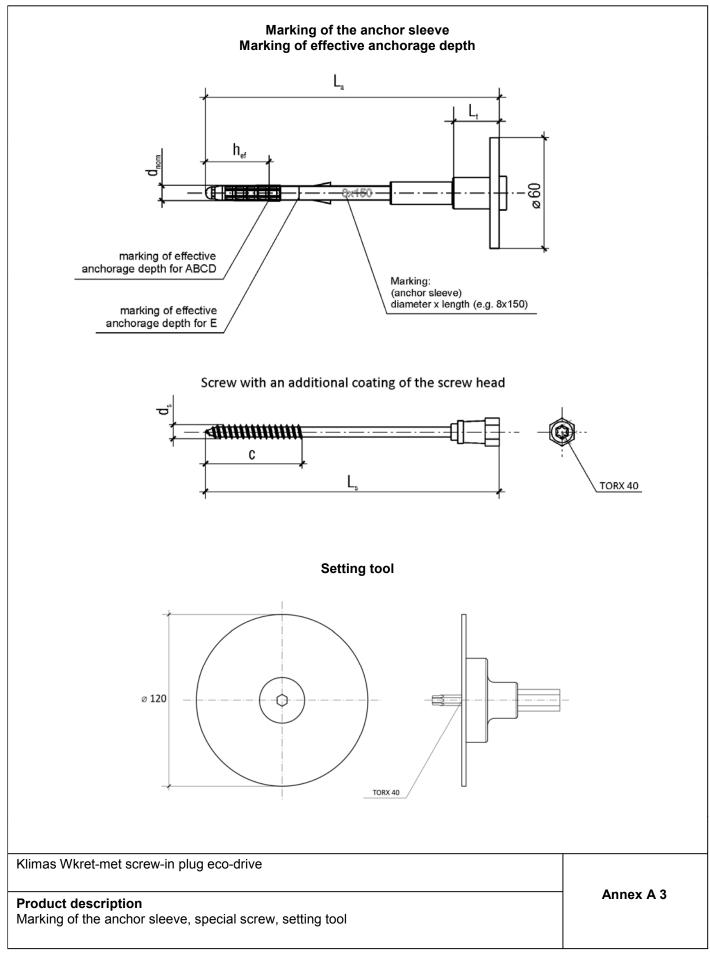
h_{ef} = effective anchorage depth

h₁ = depth of drilled hole to deepest point

h = thickness of member (wall)


h_D = thickness of insulation material

tol = thickness of equalizing layer or non-load-bearing coating


h_R = thickness of insulation cover

Klimas Wkret-met screw-in plug eco-drive	
Product description Intended use	Annex A 1

Table A1: Dimensions

	Anchor sleeve				Specific scre	W	
Anchor type	d _{nom} ±0,1	min L _a ±2	max L _a ±2	h _{ef} ABCD / E	d _s ±0,1	min L _s ±2	max L _s ±2
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
eco-drive	8	130	490	35 / 55	5,7	90	450

 $L_t = 25 \text{ mm}$ (see figure on Annex A 3)

Determination of maximum thickness of insulation h_D:

$$h_D$$
 = L_a - t_{tol} - h_{ef} - L_t (e.g. L_a = 150 mm, t_{tol} = 10 mm)
e.g. h_D = 150 - 10 - 35 - 25
 h_{Dmax} = 80 mm

Use category ABCD: $h_D = L_a - 70 \text{ mm}$ Use category E: $h_D = L_a - 90 \text{ mm}$

Table A2: Materials

Element	Material
Anchor plate	Polyamide PA6 - GF, colour nature or grey
Anchor sleeve	Polyamide PA6, colour nature or grey
Insulation cover	EPS (expanded polystyrene); mineral wool
Screw	Steel galvanized zinc plated ≥ 5 µm according to EN ISO 4042, screw head coated with Polyamide PA6-GF, colour nature or red

Klimas Wkret-met screw-in plug eco-drive	
Product description Dimensions of the anchor sleeve, special screw materials	Annex A 4

Specifications of intended use

Anchorages subject to:

• The anchor may only be used for transmission of wind suction loads and shall not be used for the transmission of dead loads of the thermal insulation composite system.

Base materials:

- Normal weight concrete (use category A) according to Annex C 1
- Solid masonry (use category B), according to Annex C 1
- · Hollow or perforated masonry (use category C), according to Annex C 1
- Lightweight aggregate concrete (use category D), according to Annex C 1
- autoclaved aerated concrete (use category E), according to Annex C 1
- For other base materials of the use categories A, B, C, D or E the characteristic resistance of the anchor may be determined by job site tests according to ETAG 014 Edition February 2011, Annex D.

Temperature Range:

• 0°C to +40°C (max. short term temperature +40°C and max. long term temperature +24°C)

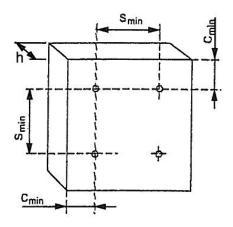
Design:

- The anchorages are designed in accordance with the ETAG 014 Edition February 2011 under the responsibility of an engineer experienced in anchorages and masonry work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings.
- Fasteners are only to be used for multiple fixings of thermal insulation composite systems.

Installation:

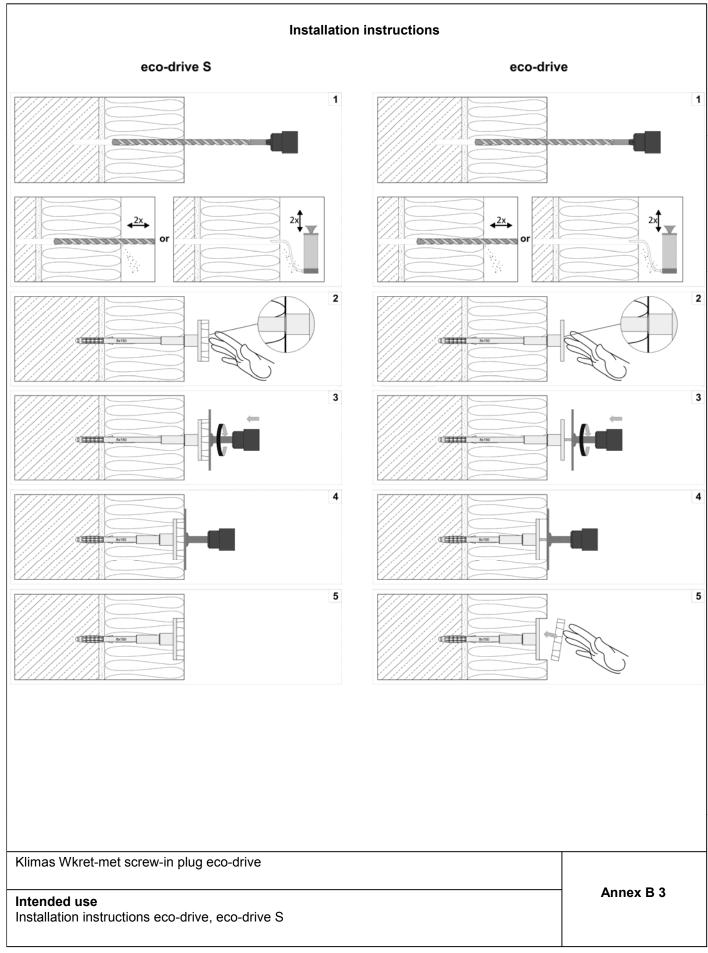
- Hole drilling by the drill modes according to Annex C 1
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Installation temperature from 0°C to +40°C
- Exposure to UV due to solar radiation of the anchor not protected by rendering ≤ 6 weeks

Klimas Wkret-met screw-in plug eco-drive	
Intended use Specifications	Annex B 1


Table B1: Installation parameters

Anchor type		eco-drive	eco-drive
Use category		ABCD	Е
Drill hole diameter	d ₀ [mm]	8	8
Cutting diameter of drill bit	d _{cut} [mm]	≤ 8,45	≤ 8,45
Depth of drill hole to deepest point	h ₁ [mm]	≥ 45	≥ 65
Overall embedment depth in the base material	h _{ef} [mm]	≥ 35	≥ 55

Table B2: Minimum thickness of member, spacing and edge distance


Anchor type		eco-drive
minimum thickness of member	h _{min} = [mm]	100
minimum spacing	s _{min} = [mm]	100
minimal edge distance	c _{min} = [mm]	100

Scheme of spacing and edge distances

Klimas Wkret-met screw-in plug eco-drive	
Intended use Installation parameters, minimum thickness of member, spacings and edge distances	Annex B 2

Installation instructions eco-drive W 1 **4**2x→ anchor plate FW o mini 3 dinima. 5 Klimas Wkret-met screw-in plug eco-drive Annex B 4 Intended use Installation instructions eco-drive W

Table C1: Characteristic resistance N_{Rk} for use in concrete and masonry each anchor

Base material	Bulk density class [kg/dm³]	Minimum compressive strength [N/mm²]	General remarks	Drill method	N _{Rk} [kN]
Concrete C12/15 EN 206-1:2000-12	-	-		hammer	1.2
Concrete C16/20 - C50/60 EN 206-1:2000-12	-	-		hammer	1.5
Solid clay brick Mz EN 771-1:2011-07 / DIN 105-100:2012-01	≥ 2.0	≥ 20.0		hammer	1.5
Sand-lime solid bricks KS (e.g. KS NF 20-2.0) EN 771-2:2011-07 / DIN V 106:2005-10	≥ 2.0	≥ 20.0		hammer	1.5
Vertically perforated sand-lime bricks KSL (e.g. KSL-R(P) 8DF) EN 771-2:2011-07 / DIN V 106:2005-10	≥ 1.6	≥ 12.0	Minimum outer web thickness a = 30 mm	hammer	1.5
Vertically perforated clay bricks HLz (e.g. Hlz B – 1.0 NF 12-1) EN 771-1:2011-07 / DIN 105-100:2012-01	≥ 1.2	≥ 12.0	Minimum outer web thickness a = 13 mm	rotary	1.5
Lightweight concrete hollow blocks Hbl EN 771-3:2011-07 / DIN 18151-100:2005-10	≥ 0.8	≥ 2.0	See Annex C 3	rotary	1.5
Lightweight aggregate concrete LAC EN 1520:2011-06 / EN 771-3:2011-07	≥ 1.05	≥ 5.0		rotary	0.9
Autoclaved aerated concrete AAC 2 EN 771-4:2011-07 / DIN V 4165-100/2005-10	≥ 0.35	≥ 2.0		rotary	0.6
Autoclaved aerated concrete AAC 7 EN 771-4:2011-07 / DIN V 4165-100/2005-10	≥ 0.65	≥ 3.5		rotary	1.2

Performances Characteristic resistance	Annex C 1

Table C2: Point thermal transmittance according EOTA Technical Report TR 025:2007-06

Anchor type	Insulation thickness h _D [mm]	point thermal transmittance
eco-drive	80	0.0017
eco-drive	150	0.002
eco-drive	420	0.0016

Table C3: Plate stiffness according EOTA Technical Report TR 026:2007-06

Anchor type	Diameter of the anchor plate [mm]	Load resistance of the anchor plate [kN]	Plate stiffness [kN/mm]
eco-drive	60	2,8	0,6

Table C4: Displacements

Base material	Bulk density class ρ [kg/dm³]	Minimum compressive strength f _b [N/mm²]	Tension load N [kN]	Displacements δ _m (N) [mm]
Concrete C12/15 EN 206-1:2000-12	-	-	0,4	2,9
Concrete C16/20 - C50/60 EN 206-1:2000-12	-	-	0,5	3,2
Solid clay brick, Mz EN 771-1:2011-07	≥ 2,0	20	0,5	3,6
Sand-lime solid bricks, KS EN 771-2:2011-07	≥ 2,0	20	0,5	3,2
Kalksandlochstein, KSL EN 771-2:2011-07	≥ 1,6	12	0,5	4,2
Vertically perforated sand-lime bricks HLz EN 771-1:2011-07	≥ 1,2	12	0,5	5,4
Lightweight concrete hollow blocks Hbl EN 771-3:2011-07	≥ 0,8	2	0,5	4,6
Lightweight aggregate concrete LAC EN 1520:2011-06 / EN 771-3:2011-07	≥ 1,05	5	0,3	3,6
Autoclaved aerated concrete AAC 2 EN 771-4:2011-07	≥ 0,35	2	0,2	2,8
Autoclaved aerated concrete AAC 7 EN 771-4:2011-07	≥ 0,65	3,5	0,4	4,2

Klimas Wkret-met screw-in plug eco-drive	
Performances Point thermal transmittance, plate stiffness, displacements	Annex C 2

Geometry	Thickness d [mm]	Outer web in longitudinal direction a [mm]	Anchor type eco-drive eco-drive S
at d	175	50	•
	240 300	50	•
a [175	35	•
a 1	240 300 365	35	•
a l d	240 300 365	30	•

The anchor shall be placed in the brick such way, that the spreading part of the expansion sleeve is located in the outer web.

Klimas Wkret-met screw-in plug eco-drive	
Leistungen Assignment type of anchor for lightweight concrete hollow bricks	Annex C 3